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ABSTRACT 
Recognizing emotions from multi-modal data is an emotion recog-
nition task that requires strong multi-modal representation ability. 
The general approach to this task is to naturally train the represen-
tation model on training data without intervention. However, such 
natural training scheme is prone to modality bias of representation 
(i.e., tending to over-encode some informative modalities while 
neglecting other modalities) and data bias of training (i.e., tending 
to overft training data). These biases may lead to instability (e.g., 
performing poorly when the neglected modality is dominant for 
recognition) and weak generalization (e.g., performing poorly when 
unseen data is inconsistent with overftted data) of the model on 
unseen data. To address these problems, this paper presents two 
adversarial training strategies to learn more robust multi-modal 
representation for multi-label emotion recognition. Firstly, we pro-
pose an adversarial temporal masking strategy, which can enhance 
the encoding of other modalities by masking the most emotion-
related temporal units (e.g., words for text or frames for video) 
of the informative modality. Secondly, we propose an adversarial 
parameter perturbation strategy, which can enhance the gener-
alization of the model by adding the adversarial perturbation to 
the parameters of model. Both strategies boost model performance 
on the benchmark MMER datasets CMU-MOSEI and NEMu. Ex-
perimental results demonstrate the efectiveness of the proposed 
method compared with the previous state-of-the-art method. Code 
will be released at https://github.com/ShipingGe/MMER. 
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1 INTRODUCTION 
Multi-modal Multi-label Emotion Recognition (MMER) task aims to 
identify emotions from multi-modal data, so as to meet the require-
ments of some special applications, such as chatbot and emotional 
conversation systems [30]. Compared with emotion recognition 
based on single modality, such as text-based emotion recognition, 
MMER requires stronger multi-modal representation ability. The 
key issue of improving multi-modal representation ability is how 
to efectively extract representation from each single modality and 
integrate representations of all modalities. 

Existing MMER methods generally focus on how to design efec-
tive network structures to obtain strong representation ability, and 
just naturally train the model on training data without interven-
tion [1, 10, 13, 31]. They expect that natural training can allow the 
representation model freely and adaptively learn the most relevant 
information from the training data for emotion recognition. 

However, despite the good performance they achieve, the natural 
training scheme is prone to encounter two problems. Firstly, natural 
training does not guarantee that every modality can be adequately 
encoded. As shown in the left part of Figure 1, it is possible that 
the model tends to over-encode some informative modality (such 
as the text modality in Figure 1) while under-encode other less 
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Figure 1: The illustration of natural training and our pro-
posed adversarial masking training strategy. 

informative modalities. We denote this problem as modality bias of 
representation. Such modality bias may result in the unstable perfor-
mance of model on unseen data when the under-encoded modality 
is dominant for recognition [26]. Secondly, natural training without 
intervention (e.g., regularization) may cause the model overft the 
training data. We denote this problem as data bias of training. Such 
training data bias may lead to the weak generalization of model on 
unseen data with diferent data distribution. 

To address these problems, we propose a robust multi-modal rep-
resentation learning method for multi-label emotion recognition, 
which advocates the use of adversarial training for multi-model 
representation learning. Specifcally, we propose two adversarial 
training strategies. Firstly, to address the modality bias, we propose 
an adversarial temporal masking strategy, aiming at enhancing the 
encoding of other modalities by masking the most emotion-related 
temporal units (e.g., words for text or frames for video) of the infor-
mative modality. As shown in the right part of Figure 1, when we 
mask the emotion-related information in text modality, the encoder 
of other modalities can be enhanced and the emotion-related in-
formation in other two modalities can be adequately encoded. The 
key challenge of this strategy is how to locate the most emotion-
related units for masking, which can be solved by mask prediction 
and adversarial gradient reversal. Secondly, to address the training 
data bias, we propose an adversarial parameter perturbation strat-
egy, aiming at enhancing the generalization of the model. Unlike 
traditional adversarial perturbation strategies that add perturba-
tion to the input image pixels or word embeddings, we add the 
adversarial perturbation to the intermediate parameters of model 
as model regularization. The key challenge of this strategy is how 
to decide the perturbation for each parameter, which can be solved 
by perturbation in the opposite direction of parameter’s gradient. 

The major contributions of this paper are summarized as follows: 

• We design a simple encoder-decoder style multi-modal emo-
tion recognition model, and combine it with our specially-
designed adversarial training strategies to learn more robust 
multi-modal representation for multi-label emotion recogni-
tion. 

• We propose two efective adversarial training strategies, i.e., 
adversarial temporal masking and adversarial parameter 
perturbation, which can better boost model performance 
than natural training. 

• We conduct experiments on the benchmark datasets CMU-
MOSEI and NEMU. The experimental results demonstrate 

that our proposed method outperforms previous methods 
and achieves state-of-the-art performance. 

2 RELATED WORK 
In this section, we introduce the following research topics relevant 
to our work comprehensively. 

2.1 Multi-Modal Emotion Recognition 
Multi-Modal Emotion Recognition is a research hotspot that has 
attracted widespread attention in the afective computing commu-
nity. Previous methods mainly focus on the alignment and fusion 
of multi-modal data [5, 13, 25, 33, 34]. Tsai et al. [25] introduce 
the Multi-modal Transformer to generically address the issues of 
inherent data non-alignment and long-range dependencies across 
modalities. Chauhan et al. [5] learn the inter-modal interaction 
among diferent modalities with an auto-encoder. Ju et al. [13] use 
a transformer-based architecture to model the modality-to-label 
and label-to-label dependency simultaneously. More recently, a 
few methods for the more realistic MMER task have been pro-
posed. Zhang et al. [31] introduce a multi-modal sequence-to-set 
approach to model the dependence in diferent labels and modalities. 
Zhang et al. [32] propose a heterogeneous hierarchical message 
passing network that considers label-to-label, feature-to-label, and 
modality-to-label dependency during training. Zhang et al. [33] de-
vise a BERT-like cross-modal encoder to fuse private and common 
modality representations to capture richer semantic information for 
each label from diferent perspectives. While these methods only 
focus on the design of model structures, they neglect the problems 
of data bias and modality bias during training. 

2.2 Bias in Multi-Modal Learning 
Recent studies have demonstrated that the modality bias problem is 
often encountered in multi-modal learning, and many methods have 
been proposed to tackle this problem [7, 16, 24, 26]. Winterbottom 
et al. [26] demonstrate an inherent bias in the dataset towards the 
textual subtitle modality in the large-scale video question answer-
ing dataset TVQA. Gat et al. [7] propose a novel regularization term 
based on the functional entropy to balance the contribution of each 
modality to the multi-modal classifcation result. Tian et al. [24] 
discover that the discriminative information is not well-explored 
during training due to the modality bias problem and mitigate 
modality bias with an individual-guided learning mechanism. Liu 
et al. [16] fnd that existing models tend to capture the selection 
biases of frequently appeared video-query pairs in the temporal 
sentence grounding task and propose the feature distillation and 
contrastive sample generation methods to alleviate the issue. Be-
sides modality bias, the data bias problem, a common problem in 
supervised learning, can also be encountered in multi-modal learn-
ing. Previous studies have tried to alleviate the data bias problem 
through various strategies, including feature selection [9], data pre-
processing [2], and model adjustment [14]. While these methods 
are designed for uni-modal learning, they are also applicable for 
multi-modal learning. 
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Figure 2: The illustration of our MMER model and proposed two adversarial training strategies. 

2.3 Adversarial Training 
Adversarial Training (AT) focuses on revealing the defects of models 
and improving the robustness [8, 15]. The main process of adver-
sarial training is to inject adversarial examples designed by an 
adversary to improve the robustness of the model [3, 4, 29]. Ad-
versarial training has been explored in many CV and NLP tasks. 
Kurakin et al. [15] use adversarial training to train a model on the 
large-scale ImageNet dataset, signifcantly improving the model’s 
robustness. Miyato et al. [19] extend adversarial training to the 
text domain by applying perturbations to the word embeddings 
in a RNN model to learn a robust text classifcation model. Wu 
et al. [27] apply AT in relation extraction within the multi-instance 
multi-label learning framework. Shafahi et al. [22] present an algo-
rithm that eliminates the overhead cost of generating adversarial 
examples by recycling the gradient information computed when 
updating model parameters. In this paper, we use the idea of ad-
versarial training to alleviate the data and modality bias and learn 
more robust multi-modal representation for the MMER task. 

3 PROPOSED METHOD 
In this section, we frst defne the multi-modal multi-label emotion 
recognition task formally and then introduce the model architecture 
and the proposed two adversarial training strategies. Finally, we 
give the overall training algorithm in detail. 

3.1 Task Defnition 
We frst introduce notations and formalize the Multi-modal Multi-
label Emotion Recognition (MMER) task. Without loss of generality, 
we consider three modalities, i.e., text modality, video modality, and 
audio modality, in the MMER task. Let Y = {1, 2, . . . , �} denote the 
pre-defned emotion label set with � diferent emotion labels. Let 
D = {(�

�
� , �

�
� , �� ), �� }�

� 
=1 denote the training set, where (�

�
� , �

�
� , �� )

� � 
is the �-th multi-modal sample, �� ⊆ Y is the ground-truth label set 
of the �-the sample, and � is the number of samples in the training 
set. Note that each sample contains three sequences of temporal 
units (i.e., words for text, frames for video, and segments for audio) 

}�� corresponding to three modalities, i.e., text sequence �� = {�� 
� � � �=1, 

video sequence �� = {�� }� 
= 
� 

1, and audio sequence �� = {�� }�� 

� � � � � � � � =1, 
where �� , �� , and �� denote the length of corresponding sequence. 
Then, the goal of the MMER task is to learn a model based on 
training set D and apply it to recognize emotions from unseen 
samples. 

3.2 Overview of Model Architecture 
We design an encoder-decoder style model for the MMER task. As 
shown in Figure 2(a), our model consists of fve Transformer-based 
modules: text encoder �� , video encoder �� , audio encoder �� , 
multi-modal encoder �� , and emotion decoder � . For convenience, 
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Figure 3: The detailed illustration of ATM strategy. 

we denote all encoders as � = {�� , ��, ��, �� } and the parameters 
of our model as � = {�� , �� }, where �� refers the parameters of �. 

Given a multi-modal sample (�� , �� , �� ) as input, we frst use 
three uni-modal encoders �� , �� , and �� to extract features � � , � � , 
and �� from �� , �� , and �� , respectively. Then, we concatenate 
these features into a unifed feature vector �� = [� � , � � , ��], 
and sent it to �� to get the multi-modal representation �� . After 
that, we set � learnable label embeddings as queries of emotion 
decoder to decode �� . Finally, the outputs of � are fed to � linear 
classifers with Sigmoid function to obtain the probabilities � ∗ of 
all emotions in Y. 

Therefore, the optimization objective of training the model on 
the training set D can be written as: 

min E(�� ,�� ,�� ,� )∼D [L� (� ∗ , �)] (1)
�,� 

1 � � ∑ ∑ 
L� (� ∗ ,�) = L��� (�� � 

∗ ,�� � ) (2)
� × � 

�=1 � =1 

where L��� (·) refers the binary cross-entropy loss function: 

L��� (� ∗ , �) = � log� ∗ + (1 − �) log (1 − � ∗) (3) 

3.3 Adversarial Temporal Masking 
The key idea of Adversarial Temporal Masking (ATM) strategy is 
to mask the most emotion-related temporal units of one modal-
ity, thus boosting the representation ability of other modalities. 
Such masking operation can be applied to all modalities simulta-
neously. Therefore, the critical challenge is how to identify the 
most emotion-related temporal units of each modality. As shown in 
Figure 2(b), we solve this problem by setting a masking network � 
for each modality (i.e., �� , �� , and �� for text, video, and audio, 
respectively) to predict the probability of each temporal unit of 
input sequence to be emotion-related. Taking �� as an example, 
the masking network �� can take the output �� of encoder �� as 
input, and then generate a binary mask �� with the same length of 

the input sequence �� . Then, by applying �� to the original input, 
we can obtain a masked input �̂ . Finally, we can get the recognition 
probabilities �̂∗ of the masked input �̂ . 

To ensure that the masking network can be well optimized and 
correctly predict the emotion-related temporal units, the mask-
ing network should play a minmax game with the encoder � and 
decoder � , which can be formalized as: 

min E(�� ,�� ,�� ,� )∼D [ max L� (�̂∗ , �)] (4)
�,� �� ,� � ,�� 

1 � � ∑ ∑ 
L� (�̂∗ , �) = L��� (�̂� � 

∗ , �� � ) (5)
� × � 

�=1 � =1 

which implies that all masking networks �� , �� , and �� try to 
mask all emotion-related units, thus making the recognition model 
unable to correctly predict the emotions (i.e., maximizing the loss), 
while encoder and decoder expect to correctly predict the emotions 
(i.e., minimizing the loss). 

Specifcally, as shown in Figure 3, we use a linear layer with 
Sigmoid function and a top-k operator to construct the masking 
network � . Given an input sequence � , the binary mask � can be 
calculated as: 

� = T (Sigmoid(�� + �)) (6) 
R�×� where � ∈ is the output of uni-modal encoder for � , 

� ∈ R� ×1, � ∈ R�×1 are the weight and bias of the linear layer 
respectively, � is the length of input sequence � , and � is the dimen-
sion of feature vector � . Let � ∈ R�×1 denote a real-value sequence, 
the top-k operator T is defned as: (

0, �� ∈ � highest candidates. T (�)� = (7)
1, otherwise. 

In order to enable the parameters of � to be optimized by back-
propagation, we employ the SOFT top-k operator proposed in [28] 
as the top-k operator instead. The SOFT top-k operator parame-
terizes the standard top-k operator in terms of the solution of the 
following Optimal Transport problem: 

Γ ∗ = arg max < �, Γ > 
Γ≥0 (8) 

s.t. Γ1� = 1� /�, Γ⊤1� = [�/�, (� − �)/�]⊤ 

where Γ∗ is the optimal transport plan, � ∈ R�×� is the cost matrix 
using squared Euclidean distance. Then the top-k operator can be 
rewritten as: 

T = �Γ ∗ · ⊤ [1, 0] (9) 
After that, the masked input �̂ can be calculated by: 

�̂ = � ⊙ � (10) 

where ⊙ represents the temporal masking operation which masks 
the temporal units of � according to the value of � at the same 
position. 

In addition, to optimize the masking network based on the min-
max equation (i.e., Eq.4), we should reverse the gradient of � during 
back-propagation, so that the model can be penalized when mask-
ing temporal units with less emotion-relation information during 
training. The optimization formula of the parameters of � is: 

�� ← �� + �▽�� L� (�̂∗ , �) (11) 

where � is the learning rate. 
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Algorithm 1 Overall Training Flow of the Proposed Adversarial Training Strategies 

Input: The training set D = {(�
�
� , �

�
� , ��), �� }� 

� �=1 . 
Output: The well-trained model. 
1: Initialize model parameters �� , �� , ��� , ��� , ��� , and learning rate � . 
2: Repeat 
3: ▷ Emotion Recognition: 
4: �∗ = � (�� (�� (�� ), �� (�� ), �� (��))). 
5: L� = L��� (�∗ ,�). 
6: Compute ▽��� L� , ▽��� L� , ▽��� L� , ▽��� L� , and ▽�� L� through back-propagation. 
7: ▷ Adversarial Temporal Masking: 
8: Compute masks: �� = �� (�� (�� )), �� = �� (�� (�� )), �� = �� (�� (�� )). 
9: �̂� = �� ⊙ �� , �̂� = �� ⊙ �� , �̂� = �� ⊙ �� . 
10: �̂∗ = � (�� (�� (�̂� ), �� (�̂� ), �� (�̂�))). 
11: L� = L��� (�̂∗ , �). 
12: Compute ▽��� L� , ▽��� L� , ▽��� L� , ▽��� L� , −▽��� L� , −▽��� L� , and −▽��� L� , through back-propagation. 
13: ▷ Adversarial Parameter Perturbation: 

� 
14: Compute the perturbation ��� = � · , and� = �▽��� L� , and then apply it to �� to obtain �� .∥� ∥2 � 

15: �̃∗ = � (�� (�� (�� ), �� (�� ), �� (��))).� 
16: L� (�̃∗ ,�∗) = KL(� (�∗ |�� , �� , �� ; � )∥� (�̃∗ |�� , �� , �� ; � + �)). 
17: Compute ▽��� L� , ▽��� L� , ▽��� L� , ▽��� L� , and ▽�� L� through back-propagation. 
18: ▷ Optimization: 
19: Accumulate all the gradients based on the tradeof parameter in Eq.15 and optimize the model with AdamW optimizer. 
20: Until model converges or reaches maximum iterations. 

3.4 Adversarial Parameter Perturbation 
The key idea of Adversarial Parameter Perturbation (APP) strategy 
is to obtain noise-invariant representation by perturbing the model 
parameters without afecting the prediction results, thus enhancing 
the generalization of the model. As is shown in Figure 2(c), unlike 
traditional adversarial training methods that add perturbation to the 
input image pixels or word embeddings for various uni-modal tasks, 
we apply adversarial perturbation � to the intermediate parameters 
of the model to work as an efective regularization during the 
learning of multi-modal representations. 

To fnd the efective perturbation � , the perturbation also should 
play a minmax game with the encoder � and decoder � , which can 

� (�̃ |� , � , � ; � + �)) 

be formalized as: 

min ∗ E ∗
 (�� ,�� ,�� [,� )∼D  max L� (�̃ , � )] (12) 

�,� �,∥� ∥ ≤� 

(�̃∗ L� ,  � ∗) = KL(� (� ∗ � �|� , � � , � ; � )∥ 
∗ � � �

(13) 

where � is the constraint for the perturbation, �̃∗ is the output 
of the perturbed model, and KL(� ∥�) denotes the KL divergence 
between distributions � and �. This minmax equation implies that 
all perturbation � try to perturb the model parameters, thus making 
the recognition model unable to correctly predict the emotions (i.e., 
maximizing the loss), while encoder and decoder expect to resist the 
perturbation and correctly predict the emotions (i.e., minimizing 
the loss). 

Specifcally, we perturb the parameters of the multi-modal en-
coder �� by adding learnable noise Attention� and FNN� to the 
projection layers of attention mechanism and the feed-forward 
layers during training, respectively. 

However, exact minimization of � is intractable for neural net-
works. Inspired by [8], we approximate � by linearizing L� around 
input � . With a linear approximation and an �2 norm constraint, 
the perturbation is calculated every training step as: 

� 
� = � · , where � = �▽��� L� (14)∥�∥2 

During every training step, we frst compute L� and then back-
propagate to get the gradient � and apply the noise � to the multi-
head self-attention layers of the multi-modal transformer encoder 
�� , and then re-optimize the model again. 

3.5 Overall Training 
In summary, the overall training objective of our method is: 

min E(�� ,�� ,�� ,� )∼D [L� (� ∗ , �)
�,� 

+ � max L� (�̂∗ , � ∗) + � max L� (�̃∗ , � ∗)] (15) 
� �,∥� ∥≤� 

where � and � are two trade-of parameters. 
The full training fow of our model is provided in Algorithm 1. 

Given a training batch {(�
�
� , �

�
� , �

�
� , �� )}�

� 
=1 with � samples, frst, we 

input the clean data into the model and use the output to compute 
the loss L� , then perform back-propagation to compute the gradient 
▽� L� . Second, we use the masking networks �� , �� , and �� to 
generate the mask to obtain the masked data (�̂� , �̂� , ˆ , �) and then �� 

compute L� and ▽� L� and reversed gradient −▽�� L� . Third, 
we use L� to compute the perturbation � and then compute L� and 
▽� L� . Finally, we update the model with the weighted accumulated 
gradients using the AdamW optimizer. 
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CMU-MOSEI NEMu 
Approach Methods ���(%) � � ���1(%) ���1(%) ���(%) � � ���1(%) ���1(%) 

BR (Shen et al. 2003) 22.2 0.371 38.6 34.7 23.0 0.475 41.1 40.5 
Classical CC (Read et al. 2011) 22.5 0.377 38.6 34.1 23.5 0.465 41.7 41.1 

LP (Tsoumakas et al. 2010) 15.9 0.426 28.6 28.8 21.1 0.414 37.2 35.0 

LASN (Xiao et al. 2019) 39.3 0.209 50.1 32.3 19.5 0.332 39.7 35.7 
Linguistic Seq2set (Yang et al. 2019) 

KRF (Ma et al. 2020) 
45.7 
45.3 

0.231 
0.226 

53.8 
51.5 

34.0 
29.0 

24.8 
23.1 

0.424 
0.496 

42.1 
42.0 

39.7 
39.7 

Non-linguistic 
ML-GCN (Chen et al. 2019) 
MLEE (Ando et al. 2019) 

41.1 
43.7 

0.207 
0.211 

50.9 
52.8 

29.7 
38.6 

15.8 
-

0.293 
-

34.4 
-

27.8 
-

MulT (Tsai et al. 2019) 44.5 0.190 53.1 34.4 17.9 0.293 42.6 39.0 
CIA (Chauhan et al. 2019) 42.9 0.214 45.5 11.7 11.1 0.336 29.6 34.0 

Muti-modal M3ER (Mittal et al. 2020) 40.9 0.195 51.9 34.9 19.4 0.281 40.6 36.4 

HHMPN (Zhang et al. 2021) 45.9 0.189 55.6 43.0 24.9 0.270 46.1 43.5 
TAILOR† (Zhang et al. 2022) 43.7 0.206 49.7 37.1 21.6 0.281 40.6 35.9 

Ours 48.4 0.185 56.9 41.7 30.3 0.291 50.2 47.4 

Table 1: Comparison of our method with the existing emotion recognition methods on the CMU-MOSEI dataset and NEMu 
dataset. The best results are marked in bold. †: Since the threshold of prediction in the TAILOR method is 0.35, which is diferent 
from the commonly used 0.5 in other multi-label learning methods, we change their threshold to 0.5 and rerun their code for a 
fair comparison. 

4 EXPERIMENTS 
In this section, we frst introduce the datasets, evaluation metrics, 
and implementation details of our method. Then, we compare our 
method with other baseline methods on both datasets. Finally, we 
conduct ablation studies and model analysis for our method. 

4.1 Experimental Setup 
4.1.1 Dataset. To validate the efectiveness of our method, we 
conduct experiments on two large-scale multi-modal multi-label 
emotion datasets, i.e., CMU-MOSEI [30] and NEMu [32]. 
CMU-MOSEI The dataset contains 3,229 full-long videos from 
1,000 distinct speakers, and the videos are segmented into 22,856 
utterance-level video clips. Each utterance-level video clip contains 
data of three modalities, i.e., text, video, and audio, and is annotated 
with six discrete human emotions: angry, disgust, fear, happy, sad, 
and surprise. The features are pre-extracted following the previous 
work [30, 33]. For CMU-MOSEI, the 300-D text features are from 
the video transcripts and are extracted using GloVe model [21], 
the 35-D video features are extracted from commonly used facial 
recognition models DeepFace [23], and the 74-D audio features are 
extracted using the COVAREP software [6]. 
NEMu NEMu is a partial time series dataset collected from the 
streaming music platform NetEase Cloud Music. Each sample in 
this dataset contains lyrics, comments, audios, and images (e.g., 
covers and posters), and is annotated with twelve discrete human 
emotions including sad, excited, lonely, quiet, etc. The features are 
pre-extracted following the previous work [32]. For NEMu, the 
300-D lyric and comment features are extracted using GloVe model, 
the 74-D audio features are extracted using Librosa for MFCCs, and 
the 2048-D image features are extracted using ResNet model [11]. 
4.1.2 Evaluation Metrics. To make a fair comparison with pre-
vious methods, we employ four widely-used evaluation metrics to 
measure the performance of diferent methods on the multi-label 

classifcation problems, i.e., multi-label Accuracy (���), Hamming 
Loss (��), micro �1 (���1), and macro �1 (���1). Larger ��� , ���1, 
���1 and smaller �� indicate better recognition performance. 

4.1.3 Implementation Details. We implement our model using 
Pytorch [20] and train on 2 GPUs. For the encoder-decoder model, 
we set the number of transformer blocks as 4 for both uni-modal 
and multi-modal encoders, and 1 for the emotion decoder. The 
number of attention heads, dimension of hidden states, and feed-
forward layers are set to 8, 512, and 1,024 in all transformer blocks, 
respectively. The complexity of our model is comparable to previous 
transformer-based methods. During training, we train the model 
for 10 epochs and choose the model that obtains the best Micro-
F1 score on the validation set as the fnal model. We adopt the 
AdamW optimizer [17] with an initial learning rate of 5e-5 and 
batch size of 64 to optimize the model. Additionally, the cosine 
annealing scheduler is adopted to adjust the learning rate and the 
warm-up strategy is performed at the frst 10 iterations. We set the 
hyper-parameters � = 0.1, � = 0.1, and � = 1. 

4.2 Comparing with Existing Methods 
Considering that there are only a few multi-modal multi-label emo-
tion recognition methods for comparison, we also compare our 
method with various uni-modal multi-label (classical, linguistic, 
and non-linguistic) and multi-modal single-label emotion recogni-
tion methods, following the setting in previous studies [32]. For 
uni-modal multi-label methods, we replace their input uni-modal 
features with multi-modal features (i.e., the features from diferent 
modalities are early-fused to be a unifed multi-modal feature). For 
multi-modal single-label methods, we replace their fnal multi-class 
classifcation layer with the multi-label classifcation layer (i.e., a 
linear layer with the Sigmoid activation function). 

Table 1 presents the comparison results of our method and the 
related methods on both CMU-MOSEI and NEmu datasets. From 
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CMU-MOSEI NEMu 
Model Setting ���(%) � � ���1(%) ���1(%) ���(%) � � ���1(%) ���1(%) 

Full Model 48.4 0.185 56.9 41.7 30.3 0.291 50.2 47.4 

−�� and �� 44.1 0.224 51.2 34.1 23.6 0.336 44.6 42.1 
−� � and �� 46.6 0.217 53.4 36.5 29.1 0.304 48.9 46.3 
−�� and �� 47.3 0.199 54.1 38.7 26.1 0.319 46.0 43.1 
−�� 47.4 0.203 53.5 38.4 28.1 0.301 48.7 45.5 
−�(+ classifer over �� ) 46.9 0.190 54.1 39.3 29.1 0.299 48.9 46.7 

−ATM strategy 
−�� , �� , �� (+ random mask) 

46.2 
47.1 

0.203 
0.197 

52.8 
53.5 

36.1 
36.4 

27.6 
27.3 

0.314 
0.316 

48.1 
47.9 

46.5 
45.5 

−adversarial gradient reversal 47.6 0.196 54.1 36.6 28.5 0.299 48.6 46.7 

−APP strategy 46.9 0.196 53.4 37.9 28.8 0.293 48.9 46.1 
−� (+random perturbation) 
−������ ���� 

46.7 
47.5 

0.201 
0.189 

52.9 
54.3 

36.1 
38.4 

26.1 
29.1 

0.317 
0.291 

45.7 
49.6 

41.3 
46.4 

−FNN� 48.0 0.185 55.0 39.8 30.0 0.303 49.3 47.0 

−Transformer (+LSTM) 45.2 0.217 53.6 36.4 25.4 0.314 45.1 42.2 
−ATM, APP, Transformer (+LSTM) 41.7 0.238 49.1 34.5 22.1 0.323 43.4 41.1 

−ATM and APP strategies 
−ATM and APP strategies (+ FGSM) 
−ATM and APP strategies (+ PGD) 

45.5 
46.2 
45.3 

0.210 
0.207 
0.216 

52.1 
53.8 
52.3 

35.5 
35.1 
35.7 

25.4 
26.5 
25.1 

0.296 
0.299 
0.301 

47.3 
48.4 
46.9 

44.9 
45.3 
44.6 

−ATM and APP (+ rand erasing) 
−ATM and APP (+ Gaussian noise) 

44.2 
42.3 

0.221 
0.232 

50.1 
48.9 

34.1 
33.4 

25.5 
23.1 

0.311 
0.326 

47.1 
45.8 

45.1 
42.1 

Table 2: Ablation study of our model. Accuracy, Precision, Recall, and Micro-F1 scores on the CMU-MOSEI dataset and NEMu 
dataset. ‘−�� and �� ’ means removing the text encoder and text input. Note that for NEMu, −�� means removing lyrics and 
comments features at the same time. 

the results we can see that: First, the linguistic and non-Linguistic 
multi-label classifcation methods achieve better performance than 
classical machine learning methods on the CMU-MOSEI dataset, 
while the results are opposite on the NEmu dataset generally. For 
example, LASN performs worse than CC on the NEMu dataset, but 
obviously outperforms CC on the CMU-MOSEI dataset. The results 
suggest that multi-modal data requires high content analysis ability 
of the model since the diference of the source and organization 
of the multi-modal datasets could cause signifcant infuence in 
experimental results. Second, the multi-modal methods achieve 
better results than uni-modal methods, which demonstrates the 
efectiveness and necessity of leveraging multi-modal information 
for recognizing human emotions and multi-modal data need to well 
model interactions among diferent modalities. Third, our method 
outperforms previous methods on the ��� , ��, ���1 metrics on 
CMU-MOSEI, and ��� , ���1, ���1 metrics on NEMu, which vali-
dates the efectiveness and generalization ability of our method. 

4.3 Ablation Study 
In this part, we explore the efects of the components designed in 
our method by removing each of them individually. 
4.3.1 Efect of Model Architecture. We conduct ablation study 
on the model components to validate the efectiveness of model ar-
chitecture. These results are obtained by frst ablating components 
from model and then training model with ATM and APP. Specif-
ically, we remove the text encoder �� , video encoder �� , audio 
encoder �� , multi-modal encoder �� (replaced by concatenating 
output of diferent uni-modal encoders), emotion decoder � (re-
placed by a linear classifer after �� ), and transformer architecture 

w/o ATM10% 20% 30% 40% 50% 60% 70%

Percentage of masked words/frames
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54.0
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55.0

55.5
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M
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)
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M
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Figure 4: (a) Comparison of diferent percentages of masked 
units in ATM during training. (b) Comparison of applying 
APP to diferent modules of our model. ��,�,� denotes apply-� 
ing APP to the uni-modal encoders �� , �� , and �� . 

of the encoders (replaced by LSTM) separately. As shown in Table 
2, removing diferent uni-modal encoders all decrease the recog-
nition performance and removing text encoder �� along with text 
data caused the greatest performance degradation. Moreover, the 
recognition performance degrades when the multi-modal encoder 
�� and emotion decoder � are removed respectively, which shows 
the ability of multi-modal fusion and extraction of our model. 
4.3.2 Efect of Adversarial Temporal Masking. To study the 
efectiveness of ATM, we compare the ATM strategy with follow-
ing variants: 1. ATM strategy is removed. 2. Remove the masking 

1516



WWW ’23, April 30–May 04, 2023, Austin, TX, USA Ge et al. 

2 4 6 8
Train (num of epochs)

0.52

0.54

0.56

0.58

0.60

0.62

0.64

M
icr

o-
F1

w/o ATM, w/o APP
w/ ATM, w/o APP
w/o ATM, w/ APP
w/ ATM, w/ APP

2 4 6 8
Val (num of epochs)

0.50

0.51

0.52

0.53

0.54

0.55

0.56

M
icr

o-
F1

w/o ATM, w/o APP
w/ ATM, w/o APP
w/o ATM, w/ APP
w/ ATM, w/ APP
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Imagine if you 
can meet again 
at this moment, 
will you forget 
the past...

I never thought 
that so many 
friends have 
heard this song, 
and it is very 
touching… 

Sad
Lonely
Miss
Quiet

Healing

Sad
Lonely
Miss

Healing

Sad
Lonely
Healing

Flashing the 
message of love, 
a few words into 
my heart, it is 
not easy to 
reveal the 
mood…

I've been sighing 
with emotion for 
such a beautiful 
song, I'm ecstatic, 
I'm unbelievably 
in love… 

Happy
Miss

Romantic
Refreshing

Happy
Miss

Healing
Romantic
Refreshing

Excited
Happy

Nostalgic
Refreshing

When I opened 
my eyes and 
went back to that 
year, I also had a 
crush on me…

I think back to 
the night he 
kissed me when I 
was eighteen…

Sad
Lonely
Quiet
Miss

Refreshing

Sad
Lonely
Quiet
Miss

Refreshing

Sad
Lonely
Quiet

Moving
Healing

(a) (b) 

Figure 5: Comparison of diferent training strategies’ perfor-
mance on the training set and validation set of CMU-MOSEI 
at diferent training epochs. 

networks �� , �� , and �� , then mask units randomly. 3. Optimize 
the masking networks without reversing the gradient ▽�� L� . As 
shown in Table 2, removing the ATM strategy or part of ATM, the 
performance of model variants shows varying degrees of degrada-
tion. The results indicate the modality bias in the natural training, 
and imply the efectiveness of ATM and the importance of the mask-
ing networks and reversing the gradient ▽�� L� for mining the 
rich semantic information during training. 
4.3.3 Efect of Adversarial Parameter Perturbation. To study 
the efectiveness of APP, we compare our APP strategy with follow-
ing variants: 1. APP strategy is removed. 2. Replace gradient-based 
perturbation with random perturbation. 3. Remove the perturbation 
applied on the attention mechanism. 4. Remove the perturbation 
applied on the feed-forward layers. As shown in Table 2, the recog-
nition performance degrades on all four evaluation metrics without 
the APP strategy, especially on � . Moreover, replacing the approxi-
mation method of perturbation with random perturbation based on 
normal distribution performs even worse compared to the model 
without APP strategy, which show the importance of the approxi-
mation solution and constraint of the perturbation. 

Furthermore, in the last fve rows of Table 2, we show the re-
sults of removing ATM and APP at the same time, and replace the 
adversarial training strategies with previous adversarial training 
methods FGSM [8] and PGD [18] and basic data augmentation 
methods random erasing [35] and Gaussian noise [12]. It can be 
seen from the results that traditional adversarial training and data 
augmentation strategies have no obvious efect on the MMER task. 

4.4 Model Analysis 
In this part, we analyze the impacts of the masked units in ATM and 
the perturbed modules in APP on the performance of our model, 
and the robustness of our model. 

4.4.1 Impact of the Numbers of Masked Units in ATM. We 
conduct experiments to investigate the infuence of diferent num-
bers of masked units in ATM during training. We set the percentages 
of masked words/tokens from 10% to 80% step by 10% and then 
train the model with diferent percentages. The results are shown 
in Figure 4 (a). It can be seen from the results that masking 40% 
during training achieves the best results, while masking excessive 
units could lead to performance degradation. 

Figure 6: Cases of recognition results using our method and 
HHMPN. Audio is omitted here for simplicity. 

4.4.2 Impact of Perturbing Diferent Modules in APP. Fur-
thermore, we conduct experiments on applying APP to the attention 
mechanism and feed-forward layers in the diferent modules of the 
model. We consider adding perturbation to the uni-modal encoders 
�� , �� , �� , the emotion decoder � , and diferent combinations of 
these modules. It can be observed from Figure 4 (b) that applying 
APP to the multi-modal encoder �� outperforms all other settings, 
and applying APP to all the modules could degrade the performance. 
The results show the efectiveness of perturbing the multi-modal en-
coder and excessive perturbation may deteriorate the optimization 
of the model. 

4.4.3 Robustness of Our Model. We fnally validate whether 
our adversarial training strategies can make the model more robust 
and generalized on unseen data. First, we compare the performance 
of model with natural training (i.e., without ATM and APP) and 
with our adversarial training (i.e., with ATM, with APP, or with 
both ATM and APP) on validation set. As shown in Figure 5, as 
the performance on training set increases, the performance on the 
validation set starts to decrease rather than continue to increase. 
This phenomenon is called overftting. Whereas, on the validation 
set, we can fnd that the line of using ATM and APP is always above 
the line of natural training. This indicates that our adversarial 
training strategies can alleviate the overftting and provide better 
and more stable performance than natural training on unseen data 
(e.g., validation set). Second, we also show some recognition cases 
in the test set of NEMu in Figure 6. It can be seen from the cases 
that our method can make more positive predictions and fewer 
negative predictions than HHMPN. This also indicates the good 
generalization ability of our method on unseen data. 

5 CONCLUSION 
In this paper, we propose a novel method to learn robust multi-
modal representation for MMER based on adversarial training. We 
frst propose a simple yet efective Transformer-based Encoder-
Decoder model for emotion recognition, and then train it with our 
proposed two adversarial training strategies ATM and APP. Experi-
mental results on the benchmark MMER datasets CMU-MOSEI and 
NEMu demonstrate that both strategies can boost the performance 
and generalization of the model, and the proposed method can 
outperform previous state-of-the-art method. 
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